Рассмотрено

на заседании ШМО

Протокол № 5 от 27.08.2021 г.

Руководитель ШМО

/Леонтьева Ю.В./

«Согласовано»

Заместитель директора по УВР

/ Бахматова Е.Л./

31.08 .2021 года.

«Утверждаю»

Директор МАФУ СОШ №5 г. Ишима

/ С.Ф.Прокопенко/

Приказ № <u>174-09</u> от

31.08. .2021 года

Рабочая программа

по элективному курсу «Методы решения физических задач» для 10 класса учителя физики Федосеева Анастасия Сергеевна 2021 - 2022 учебный год

Планируемые результаты освоения учебного предмета, курса.

Личностные:

- ориентация обучающихся на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;
- готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности;
- готовность и способность обучающихся к отстаиванию личного достоинства, собственного мнения, готовность и способность вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны;
- готовность и способность обучающихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества, потребность в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью;
- принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
 - неприятие вредных привычек: курения, употребления алкоголя, наркотиков.

Метапредметные результаты:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
 - ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
 - организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
 - сопоставлять полученный результат деятельности с поставленной заранее целью.

Познавательные:

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
 - менять и удерживать разные позиции в познавательной деятельности.

Коммуникативные:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
 - координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

Предметными:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
 - демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;

- устанавливать взаимосвязь естественно-научных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и др.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные изменения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;
- проводить исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;

• использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Выпускник на базовом уровне получит возможность научиться:

- смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, Солнечная система, галактика, Вселенная;
- смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
- смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;
- вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики; уметь:
- описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; что физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
- приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио- и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;
- воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;
- оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
- рационального природопользования и охраны окружающей среды;

Содержание учебного предмета, курса

Физическая задача. Классификация задач

Что такое физическая задача. Состав физической задачи. Физическая теория и решение задач. Значение задач в обучении и жизни.

Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видов.

Составление физических задач. Основные требования к составлению задач. Способы и техника составления задач. Примеры задач всех видов.

Правила и приемы решения физических задач

Общие требования при решении физических задач. Этапы решения физической задачи. Работа с текстом задачи. Анализ физического явления; формулировка идеи решения (план решения). Выполнение плана решения задачи. Числовой расчет. Использование вычислительной техники для расчетов. Анализ решения и его значение. Оформление решения.

Типичные недостатки при решении и оформлении решения физической задачи. Изучение примеров решения задач. Различные приемы и способы решения: алгоритмы, аналогии, геометрические приемы. Метод размерностей, графические решения и т. д.

Динамика и статика

Координатный метод решения задач по механике. Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления. Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил.

Задачи на определение характеристик равновесия физических систем.

Задачи на принцип относительности: кинематические и динамические характеристики движения тела в разных инерциальных системах отсчета.

Подбор, составление и решение по интересам различных сюжетных задач: занимательных, экспериментальных с бытовым содержанием, с техническим и краеведческим содержанием, военно-техническим содержанием.

Экскурсии с целью отбора данных для составления задач.

Законы сохранения

Классификация задач по механике: решение задач средствами кинематики, динамики, с помощью законов, сохранения.

Задачи на закон сохранения импульса и реактивное движение. Задачи на определение работы и мощности. Задачи на закон сохранения и превращения механической энергии.

Решение задач несколькими способами. Составление задач на заданные объекты или явления. Взаимопроверка решаемых задач. Знакомство с примерами решения задач по механике республиканских и международных олимпиад.

Конструкторские задачи и задачи на проекты: модель акселерометра, модель маятника Фуко, модель кронштейна, модель пушки с противооткатным устройством, проекты самодвижущихся тележек, проекты устройств для наблюдения невесомости, модель автоколебательной системы.

Строение и свойства газов, жидкостей и твёрдых тел

Качественные задачи на основные положения и основное уравнение молекулярно-кинетической теории (МКТ). Задачи на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах.

Задачи на свойства паров: использование уравнения Менделеева — Клапейрона, характеристика критического состояния. Задачи на описание явлений поверхностного слоя; работа сил поверхностного натяжения, капиллярные явления, избыточное давление в мыльных пузырях. Задачи на определение характеристик влажности воздуха.

Задачи на определение характеристик твердого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости.

Качественные и количественные задачи. Устный диалог при решении качественных задач. Графические и экспериментальные задачи, задачи бытового содержания.

Основы термодинамики

Комбинированные задачи на первый закон термодинамики. Задачи на тепловые двигатели.

Экскурсия с целью сбора данных для составления задач.

Конструкторские задачи и задачи на проекты: модель газового термометра; модель предохранительного клапана на определенное давление; проекты использования газовых процессов для подачи сигналов; модель тепловой машины; проекты практического определения радиуса тонких капилляров.

Электрическое и магнитное поля

Характеристика решения задач раздела: общее и разное, примеры и приемы решения.

Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью, разностью потенциалов, энергией. Решение задач на описание систем конденсаторов.

Задачи разных видов на описание магнитного поля тока и его действия: магнитная индукция и магнитный поток, сила Ампера и сила Лоренца.

Решение качественных экспериментальных задач с использованием электрометра, магнитного зонда и другого оборудования.

Постоянный электрический ток в различных средах

Задачи на различные приемы расчета сопротивления сложных электрических цепей. Задачи разных видов «а описание электрических цепей постоянного электрического тока с помощью закона Ома для замкнутой цепи, закона Джоуля — Ленца, законов последовательного и параллельного соединений. Ознакомление с правилами Кирхгофа при решении задач. Постановка и решение фронтальных экспериментальных задач на определение показаний приборов при изменении сопротивления тех или иных участков цепи, на определение сопротивлений участков цепи и т. д. Решение задач на расчет участка цепи, имеющей ЭДС.

Задачи на описание постоянного электрического тока в электролитах, вакууме, газах, полупроводниках: характеристика носителей, характеристика конкретных явлений и др. Качественные, экспериментальные, занимательные задачи, задачи с техническим содержанием, комбинированные задачи.

Конструкторские задачи на проекты: установка для нагревания жидкости на заданную температуру, модель автоматического устройства с электромагнитным реле, проекты и модели освещения, выпрямитель и усилитель на полупроводниках, модели измерительных приборов, модели «черного ящика».

Электромагнитные колебания и волны

Задачи разных видов на описание явления электромагнитной индукции: закон электромагнитной индукции, правило Ленца, индуктивность.

Задачи на переменный электрический ток: характеристики переменного электрического тока, электрические машины, трансформатор.

Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Задачи по геометрической оптике: зеркала, оптические схемы. Классификация задач по СТО и примеры их решения.

Задачи на определение оптической схемы, содержащейся в «черном ящике»: конструирование, приемы и примеры решения. Групповое и коллективное решение экспериментальных задач с использованием осциллографа, звукового генератора, трансформатора, комплекта приборов для изучения свойств электромагнитных волн, электроизмерительных приборов.

Экскурсия с целью сбора данных для составления задач.

Конструкторские задачи и задачи на проекты: плоский конденсатор заданной емкости, генераторы различных колебаний, прибор для измерения освещенности, модель передачи электроэнергии и др.

Обобщающее занятие по методам и приёмам решения физических задач (2ч) тематическое планирование с определением основных видов внеурочной деятельности обучающихся.

Тематическое планирование, в том числе с учетом рабочей программы воспитания с указанием количества часов, отводимых на освоение каждой темы

№ уро ка	Тема урока с учетом рабочей программы воспитания	Количест во часов	Дата проведения				
Введ	Введение (1 час)						
1	Физическая задача. Классификация задач. Правила и приемы решения физических задач.	1					
Кине	Кинематика (4 часа)						
2	Основные законы и понятия кинематики.	1					
3	Решение расчетных и графических задач на равномерное движение.	1					
4	Решение задач на равноускоренное движение.	1					
5	Движение по окружности. Решение задач.	1					
Дина	амика и статика (5 часов)						
6 -7	Координатный метод решения задач по механике. Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления.	2					
8	Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил.	1					
9	Задачи на определение характеристик равновесия физических систем.	1					
10	Задачи на принцип относительности: кинематические и динамические характеристики движения тела в разных инерциальных системах отсчета.	1					
Закс	Законы сохранения (7 часов)						
11	Классификация задач по механике: решение задач средствами кинематики, динамики, с помощью законов сохранения.	1					
12	Задачи на закон сохранения импульса и реактивное движение.	1					
13	Задачи на определение работы и мощности.	1					
14	Задачи на закон сохранения и превращения механической энергии. Решение задач несколькими способами.	1					
15	Составление задач на заданные объекты или явления. Взаимопроверка решаемых задач.	1					

		<u> </u>				
16	Знакомство с примерами решения задач по механике республиканских и международных олимпиад.	1				
17	Контрольное тестирование №1.	1				
Стро	Строение и свойства газов, жидкостей и твёрдых тел (5 часов)					
18	Качественные задачи на основные положения и основное уравнение молекулярно- кинетической теории (МКТ).	1				
19	Задачи на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах.	1				
20	Задачи на свойства паров: использование уравнения Менделеева—Клапейрона, характеристика критического состояния.	1				
21	Задачи на определение характеристик твердого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости.	1				
22	Качественные и количественные задачи. Графические и экспериментальные задачи, задачи бытового содержания.	1				
Осн	овы термодинамики (4 часа)					
23- 24	Комбинированные задачи на первый закон термодинамики.	2				
25- 26	Задачи на тепловые двигатели.	2				
Эле	ктрическое поле (4 часа)					
27	Характеристика решения задач раздела: общее и разное, примеры и приемы решения.	1				
28	Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью.	1				
29	Задачи разных видов на описание электрического поля различными средствами: разностью потенциалов, энергией.	1				
30	Решение задач на описание систем конденсаторов.	1				
Постоянный электрический ток в различных средах (4 часа)						
31	Задачи на различные приемы расчета сопротивления сложных электрических цепей.	1				
	·	·				

32	Решение задач на расчет участка цепи, имеющей ЭДС. Постановка и решение фронтальных экспериментальных задач на определение показаний приборов.	1	
33	Задачи на описание постоянного электрического тока в электролитах, вакууме, газах, полупроводниках.	1	
34	Контрольное тестирование №2.	1	